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Abstract—With the fast growth of mobile edge computing (MEC), the deep neural network (DNN) has gained more opportunities in
application to various mobile services. Given the tremendous number of learning parameters and large model size, the DNN model is
often trained in cloud center and then dispatched to end devices for inference via edge network. Therefore, maximizing the
cost-efficiency of learned model dispatch in the edge network would be a critical problem for the model serving in various application
contexts. To reach this goal, in this paper we focus mainly on reducing the total model dispatch cost in the edge network while
maintaining the efficiency of the model inference. We first study this problem in its off-line form as a baseline where a sequence of n
requests can be pre-defined in advance and exploit dynamic programming techniques to obtain a fast optimal algorithm in time
complexity of O(m?2n) under a semi-homogeneous cost model in a m-sized network. Then, we design and implement a
2.5-competitive algorithm for its online case with a provable lower bound of 2 for any deterministic online algorithm. We verify our
results through careful algorithmic analysis and validate their actual performance via a trace-based study based on a public open

international mobile network dataset.
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1 INTRODUCTION

ITH the fast growth of smart devices and ubiquitous
W sensors, massive amounts of data are being generated
in edge network [1]. Meanwhile, the exponential multiplica-
tion of data is also driving the rapid development of the
deep neural network (DNN) model for wide uses in our daily
lives [2]-[4]. However, if such a large amount of data were
always shipped to cloud center for model processing, tra-
ditional cloud architecture would suffer from considerable
challenges in communication, storage, and computation [5].
Much worse, many new types of applications (e.g., cooper-
ative autonomous driving) have fairly strict latency require-
ments, which would generate an additional burden to the
center. Therefore, an alternative computational paradigm—
mobile edge computing (MEC) [6]-[8]—is advocated, which
allows the deployment of the computation in proximity to
user equipment (UE) for the time bounded responses [9].
With MEC, the DNN workloads can be (partially) pushed
to the edge of the cloud network, which in turn could
effectively mitigate the strict requirements on the commu-
nication, and consequently, fully unleash the potentials of
edge computing for cost reduction [10], [11].
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However, given the large number of model parameters,
high model computational loads, and heterogeneous capac-
ities of different computing platforms, fulfilling the require-
ments of the DNN model processing in the edge network
is not a trivial matter [12]. Firstly, for the mobile device,
due to its constrained resources [13] and finite amount of
generated data, the model training, in general, cannot be
fully deployed on it. Secondly, for the edge server, although
installed close to users, its computational capacity is still
relatively low, compared to the cloud, to train the DNN
models for serving, not only in terms of efficiency but also
in regards to coverage area. Therefore, fully deploying DNN
model to share in the edge servers, in our opinion, is not
always effective. Finally, for the cloud, it is usually far from
mobile devices and incurs long time latency in its service
path, which could compromise the quality of time-bounded
services. As such, given these issues, it is not reasonable to
place the entire DNN model computation in a single place.
Instead, we are in favor of combining the advantages of both
cloud and edge to collaboratively complete the DNN task.

To address the foregoing issues, at present, the main-
stream of DNN deployment mode in the edge is so-called In-
Cloud Training and In-Edge Co-inference (ICIE), which means
the model training is accomplished in the cloud while the
model co-inference is conducted between the edge and
mobile device [10], [14]. This mode can work as part of the
model serving process with some distinct merits. On the
one hand, given large compute resources, the model can be
continuously trained and updated in the cloud based on
the data generated from edges and devices. On the other
hand, the trained model can be dispatched to the MEC
server, which facilitates its download to the mobile device
for inference in two aspects: 1) the model cached in the MEC
server can be effectively syned with the one in the cloud
to ensure the correct inference made by the devices; 2) the
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updated model can be cached, replicated, and transferred
between the MEC servers in the edge network to support
the model sharing between the mobile users in a wide area.

Although it is crucial to the exploitation of the full
strength of DNN in a wide range of applications, the ICIE
mode has not been fully exercised or studied in existing
solutions where the mode is only used to dispatch the
updated DNN directly from the cloud center to the mobile
terminals without resorting to the edge network [15]-[17]
or with the edge network, it is often in lack of theoretical
analysis on the service cost-efficiency [18], [19].

In this paper, we intend to fill in void by studying from
an algorithmic point of view: how cost efficient it is for the
model to be dispatched from the cloud to multiple edge
sites for inference, which is defined in our context as a model
sharing problem in the edge network.

Superficially, the sharing problem described bears cer-
tain similarities to the Content Delivery Network (CDN)
[20], [21]. However, they have essential differences in several
aspects. First, the existing CDN solutions rarely take the
interplay between the edge servers and the cloud center
into account, as well also lack relevant theoretical analy-
sis. Second, since the model performs long-term training
continuously based on newly generated data, handling in-
place updates is a crucial issue in the DNN model sharing
problem, which is often missing in conventional CDN where
the delivered contents are often static [22]. Since we usually
only share and update the serialization of model parame-
ters, the transmission cost of this part is generally homoge-
nous, making this issue worth discussing separately from
conventional cache problems. Last, the mainstream CDN al-
gorithms, especially for those learning-based algorithms [9],
[18], [21], require a lot of experience to train a scheduling
model, resulting in bare compatibility with generalized real-
world scenarios. Given these differences, the model sharing
problem in our case is much more complicated and imposed
great challenges, compared to CDN.

In this paper, we study the model sharing problem
based on the ICIE deployment mode to maximize the cost-
efficiency for the DNN model serving in a crowd of ge-
ographically dispersed mobile users. More specifically, we
study the problem of sharing a trained model, pulled from
the cloud, in an edge network by caching or transfer, with
possible multiple copies, in a collection of cache servers in
the edge so that the overall cost of the time-series requests
to it is minimized. We investigate the sharing problem in
both off-line and online forms based on an often-used semi-
homogeneous cost model [23]—all pairs of cache nodes in the
edge network have the same transfer cost, but each cache
node has its own caching cost rate.! The rationale behind
this model is that it is often adopted in the settings where the
billing rates of the edge resources are partially fixed across
its different edge servers in a region as studied in [6], [24].

The off-line form is defined to model the case that a
stream of requests to a shared model can be predicted
prior to the sharing of the model. This is particularly true
when some model is accessed regularly among a set of
network nodes. However, the off-line form is usually ideal.

1. Note that the cost can be a very general concept, it can refer to the
time latency, monetary cost, or others, depending on how the cost is
defined.

2

A more practical situation is that the request sequence is
unpredictable. The online algorithm can cope well with this
case by serving the incoming requests in a timely manner
with minimum cost. In this paper, we first design a fast
optimal off-line algorithm for the predictable case and then
propose our 2.5-competitive online algorithm to tackle the
unpredictability in the more practical case. We provably
achieve these results with deep insights into the problem
and careful analysis of the solution algorithms. Note that
our algorithms are generic enough, it is not designed for
any particular type of DNN model, thus is applicable to all
kinds of DNN models as long as they can be stored in a data
file (e.g., PMML [25] and PFA [26]).

In summary, we made the following contributions in this
paper:

e We present a dynamic programming-based optimal
algorithm for the model sharing problem that can mini-
mize the total transfer and caching costs within O(m?n)
time for the off-line case, here m represents the number
of nodes in the network, while n is the length of the
request stream.

o Our online algorithm for this problem is designed by
extending the anticipatory caching idea [27] whereby
a 2.5-competitive ratio as well as its tightness are also
obtained by giving a lower bound of the ratio as 2 for
any deterministic online algorithm.

o With the proposed off-line and online algorithms, we
extend the synchronizing mechanism to support the
active model update from the cloud center, and show
that the extended mechanism does not impact the the-
oretical bound of the algorithm.

o We validate our results through an intensive trace-
based empirical study, whose results reveal our al-
gorithms are cost-efficiently feasible and practical in
reality.

The organization of the paper is as follows: we introduce
some background knowledge and related work regarding
the DNN model serving and the mobile edge network in
Section 2. We describe the formulation and notation of the
model sharing problem in Section 3 and propose an off-line
algorithm and an online algorithm with their critical analy-
sis in Section 4. We present the simulation studies to validate
our findings in Section 5, followed by the conclusion of the
paper in the last section.

2 BACKGROUND KNOWLEDGE

In this section, we introduce some background knowledge
to help understand our work, and then show the motivation
of our work.

2.1 DNN Model and Its Serving

A deep neural network (DNN), as one of the most cutting-
edge machine learning techniques, is typically composed
of multiple layers between the input and output layers. It
is often used to mimic the workings of the human brain
in processing data for successful use in many applications,
including object detection, speech recognition, language
translation, and decision making. A DNN model is fully
characterized by its layer’s components, in particular, the
weight parameters.



IEEE TRANSACTIONS ON SERVICES COMPUTING

. -
Edge Server | :_Data | User Equipment
i
i | Sourcel
i -TT-
o H 1 Data
EModeI : : Stream
| @A®/® IStream I’[\ Model | Stream Processing
[ Mo‘d/el . ' Update |
! R |
Source i | e/eve |, Additional !|resut [ Results
Y ! | Jie7e I Processing Usage
| &lele | [ I i "
i :; e | ! Current
i S BN g Model
~ Model "~ !
Storage !

Fig. 1. The architecture of model serving. The model source and
storage, allocated on edge servers, are requested by the UE, which
leverages the current model to make inferences based on the data
from the data source. The model on the edge servers is periodically
synchronized with the one updated in the cloud.

In general, the DNN model applications consist of two
phases: model training and model serving. The model training
in general is a procedure in deep learning that creates a
designed model by estimating its parameters from a large
number of training samples and in our particular case it
typically learns the weights for each pair of connected
neurons using some iterative methods [10].

In practice, the trained model is often recorded in stan-
dardized document-based intermediate representation (i.e.,
PMML [25] and PFA [26]) and then used to serve in data-
processing context by following a certain model serving
framework as shown in Fig.1. The inputs of the serving
framework are from two data streams: one containing the
data that needs to be scored, and the other containing
the model updates, which are either from the model data
blob itself or from the reference to the model data in a
database or a file system. The stream engine uses the current
model for the actual scoring in memory and delivers the
scoring results as inference outputs to its users. Since it
is represented as data rather than code, the DNN model
in general and its weight parameters in particular can be
manipulated as a special type of data, which is fundamental
for our proposed algorithms.

2.2 Mobile Edge Network

The mobile edge network we considered is part of the
cellular network infrastructure as shown in Fig.2 where
the Radio Access Network (RAN) covers a wide geographical
area, which is divided into a number of cells, each taking a
base station (BS) as a fixed access point to cover its mobile
devices by translating the radio signals into data packets,
which are then routed through the wired mobile backbone
network (CN) to external packet data networks (e.g., cloud
data centers) via packet data network gateway (P-GW). The
inter-connected BSs are typically connected to a Mobility
Management Entity (MME) and a Serving Gateway (S-GW)
via different technologies. The MME is used to handle the
control information, including mobility management and
authentication functions, for the mobile terminals while the
S-GW is deployed to process the data information, such
as data packet routing/forwarding and handover manage-
ment.

The mobile edge is created on the edge of the networking
infrastructure, where a number of MEC servers (also called
edge server or server thereafter) are deployed in close prox-
imity of the BSs, each being physically attached to one edge
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Fig. 2. Mobile edge network where MEC servers are integrated with RAN
to perform edge computing. The inter-connected BSs are connected to
a Mobility Management Entity (MME) and a Serving Gateway (S-GW)
via different technologies (e.g., microwave or landlines).

server that is inter-connected with others via a Hub Node as
shown in Fig. 2.

2.3 DNN Serving in Edge Network

The mobile-edge based infrastructure is aligned well with
the model serving framework. One can train the DNN
model in the cloud center and dispatch the trained model
to the edge servers, which are capable of manipulating it
directly at the edge network in terms of caching, replication
and transfer with the minimum service cost to serve the
stream engine in each mobile device. Note that this serving
process is not a one-off, rather, it is repeated when the model
is updated in the cloud to adapt to the new settings [28]. As
such, the models cached in the edge network, also in the
mobile device, need to be synced with the one in the cloud
for the correctness of the inference.

Overall, the mobile edge can take the place of the cloud
to some extent to facilitate latency-sensitive services. Addi-
tionally, the mobile edge can also interplay with the cloud
to deliver cost effective, ubiquitous and scalable mobile ser-
vices for inference applications. Consequently, the success
of this computing mode is largely dependent on the cost
efficiency of sharing the model among multiple edge sites
for inference.

3 MODEL SHARING PROBLEM

In this section, we formulate the model sharing problem
with respect to the mobile edge network described in Fig. 2.
To this end, we first model the edge network into a system
model whereby the sharing problem is formulated based on
a defined cost model, and its complexity is also analyzed.
For quick reference, we summarize the frequently used
symbols in Tab.1 in Appendix.

3.1 System Model

As shown in Fig. 2, a mobile edge network is composed
of m networked edge servers S = {s!,...,s"} that can
collaborate with cloud center s° to carry out well defined
computational tasks to serve a large number of mobile
devices, connecting to the eNodeB of a selected edge server.
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In particular for the DNN model serving, according to
the ICIE deployment, the model training is conducted in the
cloud by periodically using the newly generated data, while
the model inference is accomplished by mobile devices. To
this end, the edge server in this deployment often acts as
a dual role. On the one hand, it communicates with the
cloud to download (pull) the updated model, and on the
other hand, it works as a relay cache server, which is used to
cache and transfer the model inside the network for its cost-
efficient dispatch on demands to mobile devices. The mobile
device asks for the updated model by sending syn-requests
to a specific edge server in its own period.

As the billing rates of edge server vendors are currently
fixed in terms of network transmission?, in this paper, we
regard the transfer cost as a constant concerning the data
size of the DNN model. Therefore, in some realistic settings,
we can simplify the cost model to be semi-homogeneous,
in which the transfer cost and the pull cost are denoted
as A and f, respectively. Furthermore, since deletion is
instantaneous on the edge server, we can assume that the
deletion costs are trivial and can be ignored in the system
model.

Based on the defined cost model, we can explicitly define
four operations as well as their associate costs for the model
sharing in the edge network as follows:

. mOti j .
o Caching: gs™ Hm g 95", 0t; j = t; — t;, caching model
0 from s™ from ¢; to t;.
o Transfer: ps? 2 9s™, transferring model 0 from server
57 to server s while keeping the model at s9.

o Pull: ys° :ﬂ> 9s™, pulling model 6 from cloud center s0
to server s™.
o Deletion: gs™ :0> s, removing model ¢ at s™.

As thus, the edge servers in the network can receive n
random syn-requests, each being made at any time instance,
denoted as R = {ro,...,r,}, where request r; = (e;,t;),
e; € S, represents that r; is made from server e; at time ¢;.
Thus, for a request sequence as shown by black dots in Fig.3,
the four operations are combined to serve it: a) caching the
model on edge server (black line); b) transferring the model
to other edge servers (blue line); c) pulling the updated
model from the cloud (red line); d) deleting the model from
edge servers (vertices at the end of each horizontal Line).

3.2 Problem Formulation

With the system model, we can further describe how to
formulate the sharing problem with an attempt to reduce
the sharing cost through scheduling in the sequel.

3.2.1 Schedule Model

As stated above, our target is to combine a set of defined
operations for each server to manipulate the model along
the time line so that all the requests are satisfied with
minimal cost. We name such a set as a schedule, which is
defined as follows:

Definition 1 (Schedule). A schedule P is any set of caches,
transfers, and pulls satisfying: 1) the synchronization

2. Say, the cost model from Bell Network charges $0.3078 for trans-
ferring 1G B over its OC3 link [29]
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Fig. 3. An example of a standard schedule for a pre-defined request
sequence. The black dots represent requests, and the black lines repre-
sent caching that end on request, while the blue and red lines represent
transferring and pulling, respectively.

service is available for r; = (e;,¢;),0 < i < n; 2) The
transferring and caching only happen when there is at
least one edge server caching the updated model and
running the synchronization service at any time instance.
Otherwise, a pulling is incurred.

By following the method in [30], we also describe the
schedule using a space-time diagram, where the edges are
caching intervals, transferring, or pulling, and the vertices
are requests, endpoints of either transferring or pulling.
More formally, we have

Definition 2 (Space-Time Graph). We define a space-time
graph as a weighted directed graph G = (V, E, W). The
vertex set is denoted by V' = {v; | 0 < m < M,0 <
i < n}, where vertex v € {vy; | 7 € R,e; = s™}
corresponds to request r; made on edge server s™ at
time t;, vertex v € {vy; | 7 € R,e; = s™} denotes
transfer vertex and v € {vg; | 0 < i < n} represents pull
vertex. The edge set E consists of three subsets:

1) a set of cache edges Ec = {(Umj,Um;) | 0 < i < j <
n,1 <m <M};
2) a set of transfer edges Er = {(vgi, Umi), (Umi, Vi) | 0 <
i <m,m# q,and s7,s™ € S}, and
3) a set of pull edges Ep = {(vos,vmi) | 0 < i < n,1 <
m < M}.
Combined with the cost model, the edge weights W can
be defined as W(e) = A for edges e € Ep, W(e) =
W (t; — t;) for edges (Umi, Vm;) € Ec, and W(e) = 8
for edges e € Ep.

Based on the defined space-time graph, we can make
an observation by following the same arguments in [30]
that each schedule instance has a standard form, which is
defined as follows.

Observation 1 (Standard Form). For any instance of the
graph, there exists at least one optimal schedule in which
every transfer and pull occurs at a request time ¢; with
its output ends on edge server e;.

Fig. 3 shows a standard form schedule in a space-time
diagram, where all the transfers (white dots) and pulls (red
dots) connecting with the requests (black dots) at different
edge servers. By this example, one can see that the DNN
model sharing problem is equivalent to finding a standard-
form tree in its off-line or online fashion to serve all the
requests made along timeline at the minimum cost on space-
time graph G.
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3.2.2 Formulation and Complexity

Given a schedule P in standard form, we can regard its cost
as the sum of the edge weights of the standard form tree.
According to the definition of the space-time graph, the cost

of a scheduling P = {E¢ U Er U Ep} can be denoted as:
cP = > —t)+ > A

(vmivmji)€EEC (Vmirvgi) EET

+ >, B
(voivmi)EEP

Note that there could be many feasible schedules for
request sequence R, we use I' to represent the feasible
schedules for up to ;. The goal of our problem is to find an

optimal schedule P*, which can be formalized as follows:

P* = argmin{C(P)} 2)
Per

B (t
(1)

This problem is solvable in polynomial time, and we will
give a polynomial optimal algorithm in the next section.
However, its general form with heterogeneous cost model is
a variant of the rectilinear Steiner tree problem [31] and the
rectilinear Steiner arborescence problem [32], both of them
are NP-complete. Thus, it is believed that the model sharing
problem is still NP-complete, but its formal proof is still
open [33]. Moreover, due to the lack of prior knowledge
about the request sequence in the online form, designing a
reliable online algorithm with the heterogeneous cost model
is also barely achievable.

Notably, the proposed model is generic enough to adapt
to other appropriate machine learning models than DNN.

4 SHARING ALGORITHMS

Given the problem definition, in this section we investigate
the sharing algorithm for both off-line and online cases. The
off-line algorithm targets the scenario in which the request
sequence is highly predictable from history and can be
available in advance while in the online case the requests
are usually not predictable and the algorithm for this case is
more realistic.

4.1 An Optimal off-line Algorithm

Firstly, given the standard form of schedules, we can define
sub-schedule as follows:

Definition 3 (Sub-schedule). The sub-schedule Pl of P is
a schedule for r; that consists of the set of caching
intervals, transferring and pulling from P required to
satisfy all requests o, ..., ;.

Note that the sub-schedule P\9) of the optimal schedule
P may not be an optimal schedule for {r¢...r;}, and it
may not be unique.

Based on the concepts presented above, we can further
make an analysis of this problem and then derive our opti-
mal algorithm. To this end, we first obtain a lower bound on
the marginal costs to satisfy each individual request, which
is defined by

Definition 4 (Marginal Cost Bound). The marginal cost
bound of request 7; on s" is b; = min{aX + (1 —
a)B, 1jdpeiy,i}, 1 < i < n, here, « = 1 or 0, depending
on whether or not there is an updated model kept in the
group of edge servers.

5

Given the marginal cost bound, we further have a lower
bound on the total costs to satisfy a request sequence, which
is defined by

Definition 5 (Running Bound). The running bound of the
marginal costs up to request i is B; = >_5_; b;.

As a result, for a segment of the request sequence from
r; to 7, its running bound of the marginal costs can be
computed as B; — Bj, denoted by B in the sequel.
Definition 6 (Optimal Cost C(i)). We define C(i),0 < i < n,
is the cost of the optimal schedule S*. When ¢ = ?, it is
necessary to pull the model from the cloud to serve ry,
so the cost of ¢ must be 3, i.e., C(0) = S.

Our goal is to create a recurrence for C'(i) that we can
solve dynamically. To this end, by analyzing the standard
form of the schedule, we can immediately derive the opti-
mality of the trivial case when the last request is served by
pulling from s°(cloud center).

Lemma 1. If P* is an optimal schedule in which the last
operation is a pulling, then P(*~1) is an optimal schedule
up to request r;_; (ie,P0~Y C P*), and we have
C(i)y=C(i—1)+8.

Proof: 1f the optimal P* ends in a pulling, we can
directly derive the optimality of PU~Y) since in this case
caching cost is more expensive than /3. O

We now consider the other two non-trivial cases, that is,

r; is served either by transferring or caching. In these cases,

the last transferring or caching involved to serve r; may

impact all the requests made in the caching interval since a

caching is extended from its starting point to ¢; which allows

the requests to re-adjust the sources of the model (e.g., a

caching may be changed to transferring for cost reduction).

As a consequence, no request 7;,0 < j < 7 is guaranteed to

be optimal for the sub-schedule of P() with respect to the

interval [t1,¢;—1]. To deal with this, we define two auxiliary

recurrences that help compute C(7).

Definition 7 (Semi-Optimal Cost T'(i) and D(i)). We define
T(i) and D(i) to be the semi-optimal cost of a schedule
P that r; is served by transferring and caching on edge
server e;, respectively. Clearly, C'(i) < T'(i) and C(i) <
D(3).

The basic idea of auxiliary recurrence is to establish the
relationships between C(i), certain T'(j) and certain D(j)
that has been available, or vice versa, whereby the most
recent C'(7) can be computed. To this end, we also define the
following concepts in our algorithm design.

Definition 8 (Feeding Set). For each request 7;, we de-
fine its feeding set as F(i) = {rjle; # e;t; <
t;,and 7; is the most recent request on e, }.

That is, F(i) is composed of the most recent requests
on each edge server except e;. F(i) designates the set of
candidate models that could be used to satisfy r; via a
transfer in the optimal schedule. Given F(i), we further
define cover index set and pivot index for each element in
F (i) as follows,

Definition 9 (Cover Index Set). We define the cover index
set 7;(4) with respect to each r; € F(4) as
Wj(i):{k‘H(ek,tpk,tk),pk<j§k<’i} (3)
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Fig. 4. The examples of the case when «; < j and x; > j. The

final caching H(e;,t,(;),t:) impacts the serving path (shown in bold
blue line) of the requests [¢,;), t;—1] in both cases. The cycled vertices
represent the requests in F(i).

here, H (eg, tp, .t
server ej,.

%) represents a caching from ¢, to ¢ on

Definition 10 (Pivot Index). The pivot index k; for r; €
F(i) is defined by either 0 or the maximum in ;(4),
depending on whether or not 7, (i) = &, i.e.,

max{; (7 (1 1%}
i :{ 0 tmo} oz}(le)rvfise )

The definition of x; # 0 is important as it signifies

the last request in [t;,t;_1] that is served by the caching

H(ey;, tperg)s te ;) other than the transfer from H (e;, t,,,t;),

which forms the basis for the C(i) recurrences. We distin-

guish two cases: 1) k; < j, and 2) k; > j,r; € F(i). The
first is the boundary case, as illustrated in Fig. 4(a), which is
trivial.

Lemma 2. For the pivot index x;,r; € F(i) as defined in
Definition 10, if x; < j then the optimal restricted cost
T(i) = C(j) + min(p;, 13)d;: + X+ B,

Proof: C(j) is the minimal cost of satisfying all
requests up to t;. The cost of serving r; at t; is
min(g;, p1)d;5,; + A, and with the caching involved we can
satisfy all requests {ry | j < k < i} by transferring and
short caching intervals with a cost of B]_,. Since the cost of
this path is a lower bound of serving these requests, the total
cost is optimal under the stated conditions of the lemma. [

Now let’s examine the case that x; > j. In this case, both

H(es,, tpgeyyrt x;) and H(e;,t;,t;) are in the final schedule

as shown in F1g 4(b), then we have

Lemma 3. For k; as defined in Definition 10, if x; # 0 then
the optimal restricted cost

T(i) = D(k;) + min(p;, )85, + A + B4 (5)

Proof: We can construct a schedule up to r;; that ends
up with a caching. Since D(k;) is a lower bound on the cost
of this schedule, we have D(x;) < C(P*)). Since B;?, is a
lower bound on adding the requests between ,;; and ¢;_1,
and we must add min(y;, i;)0; ; to cover the interval [t;, t;].
Then, we see that D(x;) + mln(,u], wi)d;i + B2 < C(i).

If we start with a restricted optimal schedule to 7,
with cost D(k;), then we can similarly construct a restricted
schedule with a transferring from ¢; to ¢; to serve r; at the
cost of D(k;) +min(p;, 1;)8;; + A+ B;?,, which is greater
than C(7), and then conclude the lemma. O

By combining these lemmas, we enumerate all the re-
quest indexes on the interval [t,;,t;—1] to derive T(i)
recurrence as follows:

+o0 —m<i<0
T(i) = , C(j) + min(p;, )05, + B]_,
At min min {D(k) +min(y, )3 + B}
J kem

(6)
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(@) rpeiy < p(d) (b) kpy > p(3)
Fig. 5. The examples of the trivial case when r,;y < p(i) and the
non-trivial case when r,; > p(i)(m(i) # @). The final caching
H{(ei, t,(3, ti) impacts the serving path (shown in bold blue line) of the
requests ftpm,ti_l] in both cases.

Now we establish the relationships between D(i) and
certain C'(k;) that have been available. To reach this goal,
we first define ;) (i) and x,(;) concerning r,;), as special
cases of Definition 9 and 10. Afterward, as with the case
in computing the T'(i) recurrences, we also distinguish two
cases: 1) rip(y < p(i), and 2) Ky > p(i). As the same,
the first case is the trivial boundary case, and an illustrative
example of the trivial case is shown in Fig.5(a).

Lemma 4. For the pivot index rp;) < p(i), the optimal
restricted cost D(i) = C(p(7)) + pidp(iy,i + Bfﬁzl).

Proof: We can conclude this lemma by following
similar arguments in the proof of Lemma 2. O
Now we examine the non-trivial case that x,, > p;. In
this case, both H(eNp(i),tp(,ip(i)),tnp(i)) and H (e, tyey,ts)
are in the final schedule, as illustrated in Fig.5(b). Then we
have

Lemma 5. For any r,;) # 0, the optimal restricted cost
D(i) = D(rp(i)) + pidpoyi + By

Proof: We can conclude this lemma by following the
arguments in Lemma 3. O
By combining the two lemmas above, we enumerate all
the request indexes in interval [t,;y,%;—1] to derive D(i)
recurrence:
+00 -m<i<0
Cp(0)) + pibynyi + B 1<i<n

min {D(j) + pidpcir.i + Bl 1}
FETH() (9)

D(i) = min
@)

Since unit cost p; is heterogeneous on different edge
servers, we find a particular case that the request is served
by the path transferring twice. Specifically, we let s™"
denote the edge server with the minimum unit cost. The
specific route is to transfer the model from e; to s™" at
first and then transfer it to e; at the time of ¢; to serve r;,
as shown in Fig.6(a). For convenience, we call such routes
“double-transferring.”

For double-transferring, we can define Semi-Optimal
Cost E(7) for it as well, and establish its relationship with
the C'(¢), T'(i) and D() by the following lemma.

Lemma 6. For some r; € F(i),e; = s™™ and ¢; # s™"", the

optimal restricted cost £(i) = min(7'(j), D(j)) + 2X +

/Jmin(sj,i + Bg,1

Proof: Since p; is heterogeneous, we can construct
a case of (1055 > A+ pmindj;. In this case, we have
C(j) + 2X + pmind;i < C(j) + A + p0;;. Therefore,
T(i) is greater than FE(i). Similarly, we can prove that
C(J) + 2A + ptmindji < C(j) + widj,:, D(i) is greater than
E(i). O



IEEE TRANSACTIONS ON SERVICES COMPUTING

4 C(j) 4 E()
S5 ; @ S5 ?
st . ® X * ®
S8 P P Qli') S8 %:—Q@
s ® 52 —
St —@ S —@® : :
1

ami
S

(73]
A

t
(a) the case when r] is served by (b) the case when r; is served by
transferring. double-transferring.

Fig. 6. The examples of the cases when r; is served by transferring
or caching (a) and served by double-transferring (b), there are specific
paths to serve =;. In case (a), e; transfers the model to s™" at first,
and then s™#" caches it for a period at the cost of H (™", t;,t;) before
being transferred to e;. In case (b), s™*" keeps caching for a period at
the cost of H(s™", t;,t;) and then transfers model to e;.

E(i) can be directly superimposed on the new path
based on D(j) or T(j) when e; # s™" and e; # s™™".
Besides, there is another special case when r; is served by
E(j), as shown in Fig.6(b). In this case, £ (i) = E(j) + A +
M'rnindj,i + Bg_l-

Given these analyses, we can complete the recurrence for
E(i) as follows,

+0o0 -m<1<0
mzn(T(]) D(j)) + 2>‘ + Pmin0j,i
+B]_, ej # 8™ ey £ 5™
E(j) + A+ piminbj + BL_,
E(i) = min ej # s e £ 5T
rier@) | C() + A+ pmindsi + Bi_;
e; = gmin
C () + pmindji + Bl
e; = smin

®)
Given these considerations, we can complete the recur-
rence for C'(4) in terms of the T'(¢), D(i) and E(¢) as follows,

B i=0
T(i) 1<i<n
C) = min D(l)
E(7)
Cli—1)+4 o

After considerable analysis, we have the following theo-
rem for our proposed algorithm.

Theorem 1. Given the semi-homogeneous cost model, the re-
currence algorithm can correctly compute the minimum
cost of the off-line DNN model sharing problem, with
the time complexity of O(m?n).

Proof: The correctness proof can be directly obtained
by combining Lemma 2 to Lemma 6. And during the next
pass over the requests to compute the recurrences, these
pointers can be used to precisely identify each of the in-
tervals required by Eq. (6)~(9) in O(m?), O(m), O(m) and
O(1) time, respectively, on the per-request basis, thus taking
at most O(m?n) time for n requests. O

4.2 2.5-Competitive Online Algorithm

In this section, we give a 2.5-competitive algorithm for the
online version of this problem. The basic idea is to serve the
next request by keeping an updated model on server ¢; for a
period of time. As the same in the off-line case, each request
can be served by three methods: caching, transferring, and
pulling. Besides, we can decompose the problem into each
edge server to accomplish the global solution. Since there

7

are two different cost variables A\ and 3, without loss of
generality, we will discuss and design the online algorithm
in three cases: 1) 8 < A\;2) A < 8 < 2)\;and 3) 8 > 2.

4.2.1 Case1:8 <A\

In this case, the request won’t be served by transferring.
Instead, the optimal solution will consist of only caching
and pulling. Therefore, we merely need to make a trade-off
between caching and pulling costs. When the cost of caching
is greater than pulling, the algorithm will retrieve the model
from the cloud to the edge server.

Algorithm 1: OTSharing-v1 algorithm

Input: ¢ : current time ;
tp : array of the last visit time for each server.
Output: ¢ / : updated array of last visit times.
1 for tp; + £, do

2 Aty t; — tpi;
3 if request i takes place on server i then
4 if At; > B then
5 | servmg request i through pulling;
6 end
7 if At < - 5 then
8 | servmg request ¢ through caching;
9 en
10 Set active time f for the updated model on e;,
and it should be deleted when active time is
expired ;
11 tpl./ —ti;
12 end
13 end

Theorem 2. Algorithm1 is 2-competitive.
Proof:

a b

Fig. 7. In case (a), t(hg request is served by caf:h?ng; in case (b), the
request is served by pulling.

a)If At < B , request T; is served by caching in both the
optimal solution (represented by Optimal in the sequel) and
Algorithm1, as illustrated in Fig. 7(a). The competitive ratio
(denoted by c.r. in the sequel) is
ALG At
OPT mAt

b) If At > 2, request r; is served by pulling with a cost
B in both Optzmal and Algorithm1. After that, edge server ¢;
will cache the updated model with an extra cost 3 (Fig. 7(b)).
Thus, the competitive ratio is
er.(b) = ALG _ p+5
OPT — B
For all requests in R, the whole competitive ratio is

oRp - X mAt+ (B4 B) k23
M AL+ 8 kipiAt + k28—
(12)
here, k1 and k5 represent the number of instances of each
case.

cr.(a) = =1 (10)

-2 11)

O
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4.22 Case2: A< <2

When p; At < ), it’s evident that serving request by caching
is the optimal choice; When At increases to p;At > A and
multiple active models are present, the serving cost would
be less costly by transferring than by caching. Meanwhile,
when there are no other updated models, the best solution
is the same as Algorithm1: request r; should be served by
pulling. Therefore, the improved algorithm is shown in
Algorithm.2.

Algorithm 2: OTSharing-v2 algorithm

Input: ¢ : current time ;
t; : array of the last visit time for each server ;
¢': array of servers having active cache items.
Output: t;: : updated array of last visit times ;

¢’ : updated array of cache servers.
for t,; + t, do
if request i takes place on server i then
if C.size = 0 then
serving request ¢ through pulling ;
d —C+e
end
if e; € C'then
| serving request i through caching;
end
10 if e; ¢ Cand C.size # 0 then
11 serving request ¢ through transferring ;

1
2
3
4
5
6
7
8
9

12 ¢ +—C+e;

13 end

14 tm” —t;;

15 end

16 Ati +— t; — tpi';

17 if C.size > 1 and At; > % then

18 Delete the model from edge server e; ;
19 ¢ +—C—e;

20 end

21 if Csize = 1 and At; > uﬁ then

22 Delete the model from edge server e; ;
23 c+—C—e;

24 end

25 end

Theorem 3. Algorithm?2 is 2-competitive.

Proof:
C i) 5 CTpi A L i B N
gL Si s S t
L e A }\ . }\4 :}\ H }\. ﬁ
Si Si ' S 5
S0 SO s :
@ (b) (c)

Fig. 8. In case (a), the request is served by caching; in case (b), the
request is served by transferring; in case (c), the request is served by

pulling.

a) If At < %, request r; is served by caching in both
Optimal and Algorithm?2 (Fig. 8(a)), c.r.(a) is
_ % _ WAt _ 1

b) If At > A and there are updated models on other
edge servers, the Algorithm?2 still caches the model with
a cost A at first, then serves this request by transferring,
while the previous caching is wasted. By contrast, the op-

c.r.(a)

(13)

8

timal choice is serving this request by transferring without
caching, whose cost is A (Fig. 8(b)). Thus, c.r.(b) is
ALG A+ A
c.r.(b) = =

“orr A

¢) In the case of ¢ = 0, it’s evident that the request is
served by pulling, and the last active model has been held
with a cost 3. On the contrary, Optimal would serve request
by pulling without any caching (Fig. 8(c)), indicating c.r.(c)

" (0= ALG _ 45 _

c.r.(c)= OPT = B =

For all requests in R, the whole competitive ratio is
OR - 2 mALE TP+ N) + 55 (8 + )

(14)

2 (15)

Zk;ﬂ;Atk+ﬂZk2 A+ ZkB B (16)
+ k3
=1 2 <2
MY Ny
0

4.2.3 Case 3: 0 > 2\

When ¢ = 1, Algorithm2 will store the model with a cost of
B on edge server e;. And it will serve the request by pulling
if the next request time is expired. When 8 < 2), pulling
is guaranteed to be the optimal solution, but when 5 > 2,
due to p; # 1, the performance of Algorithm 2 is going to
be terrible.

i i B Ti i ioop
S M K S M ¢
gmin }\‘ gmin }\' 7\;
g gyl A 20— bt A
, u
SO il SO i
@ (b)

Fig. 9. A new optimal solution in case 3. In the case (a), At = Hﬁ + At
J

in the case (b), At = — At’. The optimal solutions are green routes.

B
I

As shown in Fig. 9, when At = uﬁ + At/, the optimal

I
route for any edge server e;(e; # s™")) would be: transfer

the model to the server with the minimal caching cost
rate, cache the model until the subsequent request, and
then serve the request by transferring. Let oo = %, the
competitive ratio of Algorithm2 in this case will be
lim 25 = é

a—0,At' =02\ + aff + pmin At A
Since 8 > 2\, Algorithm2 cannot give a constant upper
bound of the competitive ratio. To address this issue, we
propose a new bounded online algorithm (Algorithm3) as
follow.

The major difference between Algorithm?2 and Algorithm3
lies in the condition of deleting the models from edge
servers. In Algorithm3, The only model left will be held
with a cost of 2\ on ¢;, and then transferred to s™ and
maintained there with another cost of 5 — 2.

17)

Theorem 4. Algorithm3 is 2.5-competitive.

Proof:

.. . r.. .

g PLop T grax__Pl 23 I

© : © i
Smin Alﬁ—Z}»ﬁ Smin }\l p—2n ﬁ
(a) (b) ;'At" (@) i(b)

S0 : S0 :

(a) (b)

Fig. 10. Two different cases when ¢ = 1. The red line represents the
schedule of the online algorithm. In case (a), the next request is coming
before the active model on s™*™ expired while opposite in case (b).
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Algorithm 3: OTSharing-v3 algorithm

Input: ¢ : current time ;
t, : array of the last visit time for each server ;
€': array of servers having active cache items ;
s™" : edge server with minimal cache rate.
Output: t;: : updated array of last visit times ;

¢’ : updated array of cache servers.
for t,; + £, do
if request i takes place on server i then
if C.size = 0 then
serving request ¢ through pulling ;
c «—cC+e;
end
if e; € Cthen
| serving request ¢ through caching;
end
if e; ¢ Cand C.size # 0 then
serving request ¢ through transferring ;
12 c «—2C+e
13 end
14 tm/ —ti;
15 end
16 Ati +— t; — tpi,;
17 if Gsize > 1 and At; > % then

© ® N u s W N

I
R o

i
18 delete the model from edge server e; ;
19 c —c—e;
20 end
21 if C.size = 1and e; # s™'" and At; > 12% then
— g
22 transfer the model from e; to s™" ;
23 delete the model from edge server e; ;
24 c+—Cc—e;;
25 tp/ [snmn] — 1 — % ’
26 ¢ 4 smn;
27 end
28 if Csize = 1 and e; = s™™ and At; > —2_ then
"
29 delete the model from edge server e; ;
30 ¢ —C—e;
31 end
32 end

a) When ¢ # 1, the competitive ratio of Algorithm3 is as
the same as Algorithm2, which is at most 2;

b) When ¢ = 1 and At < 2—)1_‘, the request is served by
caching, which has been provecil optimal.

¢) When ¢ = 1 and i—* < At < i—)‘ + i:—{’} (Fig. 10(a)),
the cost of algorithm is:

ALG =22+ A+ A+ (8 — 2\ — pminAt) (18)

As illustrated in Fig. 10(a), there are three potential
optimal solutions in this case: solution(a), solution(b) and
solution(c). The competitive ratio is

B ALG
" min{cost(a), cost(b), cost(c)}

e ALG | ALG ALG (19)
- cost(a)’ cost(b)’ cost(c)
ALG 20+ A+ A+ (B — 2) — fimin AF)
= 2 , o\ — 1
COSt(a) )\ —+ )\ —+ Lmas Hmin + (ﬁ QA ,Utm'LnAtl) (20)

ALG 4\

li =—=2
(ﬁ—z\—umfgt’)—»o,a—m cost(a) 2\

9
ALG 22X+ X4+ X+ (B =2\ — pimin AY')
cost(b) B
im ALG —1+Q<2 v
~ at'—o cost(b) B
ALG 2 F A+ A+ pmin (222 — AY)
cost(c) 22 max (B2 — AV
(©) th (umm ) (22)
< im ALG = ﬁ =2
(/3—2>\ —At')—0 COSt(C) o 2\ -

Hmin

For all the potential optimal solutions, we proof the
competitive ratio satisfies that: c.r’ < 2, hence c.r. =
max(c.r.”) < 2 is proved.

d) When ¢ = 1 and At > IQTA + % (Fig. 10(b)), the cost
of the algorithm is: ' -

ALG =2 + X+ 3 —-2)+p (23)

As the same as case c), there are also three potential op-
timal solutions in this case: solution(a), solution(b), and
solution(c). For solution(a),
22X
cost(a) = A+ A+ ——pimin + 8 — 22> 0,

Hmaz

(24)
for solution(b), cost(b) = /3. And for solution(c), we have
B-2 .5 (25)

Apparently, the optimal solution is solution(b) with the
minimum cost 3. Therefore, the competitive ratio is :
2A+A+B-2)+8 A A
.= =24 - <24~ =2
c.r 3 + 3 <2+ 3\ 5

To sum up, for all the requests in R, the overall compet-
itive ratio is
CR - 2wt TR+ + T (6 +5)
PORNTINED DD D DR D Dt
L SME@AEAEB-22+H)
PO P DO E DY
(le,u,z‘At + 2ko A + 2k3ﬁ + 2k4ﬁ) + kg X — k1,u~;At
kips At + koA + k3B + kaf3
k4)\ — k,‘1,u,iAt
s2 kaf + kipi At
< %k‘4ﬂ — kluiAt
- kaf + kips At
—925_ 3(]61/14‘At)
2(]645 + k1uiAt) -

cost(c) = 2A + tmaa

(26)

2.5
(27)
0
Besides, we analyze the lower bound of this online
problem closely and introduce the following theorem:

Theorem 5. The competitive ratio of the online DNN model
sharing problem is at least 2 for any deterministic online
algorithm.

Proof: Assume there is an adaptive adversary that
produces a synchronization request sequence and tries to
mislead the online algorithm and make its competitive
ratio worse. For any deterministic online algorithm A, the
adversary can construct a sequence to counter the online
algorithm. To construct the worst case, we assume that all
the requests occur on s™". In this case, all algorithms could
only lever caching and pulling to serve requests instead of
transferring.
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It is reasonable to assume the caching cost of A is h
after the i-th request is satisfied, and the adversary makes a
follow-up request at time —"— + 7, where 7 is a very tiny
interval. When h < 3, we have:

er.= B 2k

o> S =2 (28)
Similarly, when h > (3, we have:
h+8 _ 28
r=—2>—=2 29
C.T. /8 = /B ( )

Let h, be any caching cost of A after request r; is satisfied in
the case h < 3, and h; for h > [ correspondingly. Suppose
there are m h, and n h; for a request sequence R, then the
competitive ratio is:

OR = 2 BHh)+35 "B+ ) o 3" (B+hs) + 208
ST+ (B) S (he) + 1B
2mhs + 2nﬁ 2mhs + 2nhs _
mhs + TLB mhs + nhs o
(30)

In summary, we construct a worst-case where any online
algorithm cannot attain a competitive ratio of more than 2.
Therefore, we declare that the lower bound on the problem
is 2, as well as conclude the theorem. O

This theorem shows the high values of our algorithm in
practical uses.

4.3 Cloud-Edge Model Synchronization

According to the system model, the cloud center would
proactively notify an edge server to download the lat-
est updated model for serving its syn-requests upon the
completion of its training phase. In this section, we will
introduce how to extend the off-line and online algorithm
to support such update requests.

4.3.1 Preliminary

For a periodically updated model, we can specify the proac-
tive notifications issued by the cloud center as a notification
sequence, denoted by U = {u1,us, ..., u}, where notifica-
tion u; is made by the cloud center s¥ at time instance t;.
The notified server first pulls the updated model from the
cloud, then passes it to other servers via transferring to serve
the requests from mobile devices in the sequel.

4.3.2 Extended off-line Algorithm

Note that all requests, as well as updates, are given in
advance, in the off-line mode. Given the deduced update
sequence U, we can derive an optimal off-line algorithm
to support the updates based on the proposed off-line

algorithm in Section 4.1.

As the same as r;, u; = (e;,1;), e; represents the server
that needs to be updated, and ¢; denotes the corresponding
time. It is natural to assume that there is an update ug before
the request sequence R. And R can be divided into multiple
sub-sequences combined with the update sequence. The
request sequence with updates can be denoted as follow:

RUU = {wo, Toy vy Py FU{UL, Paaq 41, ooy Paug U U{Uk, oo, Pi }

To deal with the request sequence with updates in off-
line form, an intuitive and reasonable idea is to leverage the
proposed off-line algorithm on each sub-sequence separately,
which obviously leads to the optimal solution. Therefore, the
extension of the off-line algorithm is to decompose the re-
quest sequence concerning the update time and solve the sub-
sequence separately.

10
Sm rpi }\, deleteé I;l
. NEGE
S }\‘ gupdate
k
S  delete

Fig. 11. When the update operation occurs on s?, the models on other
edge servers (s™, s*) will be deleted, and the subsequent requests on
other edge servers are satisfied via transferring or pulling.

4.3.3 Extended Online Algorithm

In the online version, it is reasonable to assume that updates
only occur on servers with active caches for the availability
guarantee. Besides, this assumption would not affect the
discussion in terms of the competitive ratio.

We make the following extension to the online algorithm
to handle updates: once the update operation occurs on
59, the algorithm must expire other stored models on edge
servers (s™ # s7) right now. As shown in Fig. 11, the stored
model on s™ and s* should be deleted when the update has
happened on s9.

Theorem 6. The extended online algorithm with update
operation is 2.5-competitive.

Proof: In the case of ¢ = 1, since the cost of deleting
is negligible, the update operation brings barely any extra
cost when there is only one active cache. In contrast, it is a
non-trivial case when ¢ # 1, because the occurred updating
results in deleting on ¢ — 1 active servers, bringing about a
change in the cost of subsequent requests. It can be found
that when subsequent requests are supposed to be served
by caching, inserting an update operation would force them
to be served by transferring or pulling. Analyses conducted
on caching in this case is shown as follow:

/ /

_ A Mft + A < Alti/IEOA ,uzft + A _ % —2 (1)
here, At’ is the offset between the time updating occurred
and the time the cache should be deleted originally. Note
that the update does not affect the cost of this algorithm
when ¢ = 1. And the competitive ratio of the algorithm
when ¢ # 1 has been proved to be less than 2. Thus, the
competitive ratio of the entire algorithm is still 2.5. O

In summary, by considering the pulling and transferring
operations in the model sharing problem, we discussed
the relationships between § and A and proposed online
algorithms for three cases, respectively. We also analyzed
and proved that the presented algorithms could achieve
a competitive ratio of 2.5, even combined with update
operations.

C.T.

5 EVALUATION

We conducted experiments to evaluate the actual perfor-
mance of the designed algorithms and validate the proposed
theorems. The simulator efficiently implements the pro-
posed algorithms and the model upon which the algorithms
are built.

5.1 Experimental Setup

We investigated a practical scenario where the user per-
forms DNN inference (e.g., image recognition, voice input,
etc.) through a mobile device while the DNN training is
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deployed in the cloud center. When users need to update
the model, they can synchronize it through edge servers
provided by the cloud service provider (e.g., Amazon Web
Services, AWS®). Considering the charging mechanism of
cloud service providers, we hope to turn down the model
serving service when there is no user synchronization to
reduce storage and communication costs.

Dataset: We adopted a public open international mobile
network dataset as the experimental trace data [34]. The
dataset tracks mobile users’ access to web services and is
collected by the MONROE platform spanning six countries,
27 mobile network operators, and 120 measurement nodes.
We sampled 7000 records from it to simulate the model syn-
chronizations. As a simulation of workloads, we leveraged
the CIFAR-10 [35] as the training and test dataset.

Baselines: For convenience, we named the proposed off-
line and online algorithms as DTSharing and OTSharing,
respectively, and compared them with the off-line Greedy
and online Active Caching with 3-competitive ratio (AC3) algo-
rithms developed in [36]. In particular, we used UOTSharing
to denote the OTShring algorithm with an active update
mechanism. To this end, we stipulated that the training
and updates of the DNN model are performed every 500
requests. In addition, we took a DNN model ResNet50 as
the workload.

Parameters: We took the billing policy of AWS as a
reference to model the cache cost of servers. For instance,
“m4.xlarge” costs 48¢ per hour (i.e., 0.8¢ per minute) [37].
Therefore, we set the unit cache cost of edge servers as
a uniform distribution g; U[0.4,1.6]. Similarly, we made
AWS data transfer price as the cost of data transmission
in the simulation, which takes approximately 14¢ per GB
transfer out to the Internet and 6¢ per GB between re-
gions within Asia [38]. The size of a pre-trained ResNet50
model is 102MB, which means that the transmission and
pull costs are approximately 1.4¢ and 0.6¢ respectively
(8=14,X=0.6).

Moreover, we defined the performance ratio as p =
C(A)/C(DTSharing), which is used to measure the cost-
efficiency of algorithms. Obviously, the lower the perfor-
mance ratio (approx to 1) of an algorithm, its cost is more
approx to the optimal (i.e., the cost of DTSharing), which
indicates better performance.

Regarding the hardware of the platform, we treated
Raspberry Pi 4b as the edge servers, Tesla-V100 as the
cloud center, and leveraged PyTorch for DNN training and
inference.

5.2 The off-line algorithm

To validate the correctness and performance of the off-
line algorithm, we designed a greedy algorithm Greedy as
a baseline for comparison. The main idea of the greedy
algorithm is to start with the last request of all edge servers
and find a path with the lowest cost as the solution. The
time complexity of the greedy algorithm is O(mn).

Firstly, we investigated the performance of DTSharing
and Greedy by calculating the performance ratio, which is
defined by the cost of Greedy over the cost of DTSharing.
As shown in Fig.12(a), in all our experiments with different

3. https:/ /aws.amazon.com
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Fig. 12. Performance of the compared algorithms.

model sizes, the performance ratios are more significant
than 1, indicating DTSharing is better than Greedy. Moreover,
the ratio of Greedy gradually rises with the increase of the
model size, indicating that the performance of Greedy gets
worse as the model increases.

Afterward, we compared the running time of the algo-
rithms and took the speedup ratio (i.e., the running time
of DTSharing over the running time of Greedy) as a metric.
To this end, we sampled the request sequence to investigate
that the running time varies with the number of sampled
requests (n) with an increment of every 100 samples. As
shown in Fig.12(b), the running times of both algorithms
grow up linearly with the increasing number of requests,
which is consistent with the complexity we analyzed.
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Fig. 13. Distribution of the speedup ratio of the greedy algorithm, repre-
senting the comparison of the running time of the two algorithms. The
x-axis is the speedup ratio, and the y-axis is the density of the speed
ratio.
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Since the number of edge servers (m) is fixed, the
speedup ratio of the greedy algorithm should be a constant
from our proposition in complexity analysis. The distribu-
tion of the speedup ratios is demonstrated in Fig.13, which
is circa 15x, implying that the speedup ratio is stable even
though the number of requests is changed. This illustrates
that DTSharing only takes a constant multiply of the time
over Greedy to attain the optimal solution.

5.3 The online algorithm

With the optimal cost achieved by DTSharing, we studied
the cost-efficiency of both OTSharing and UOTSharing. We
first investigated the impact of different DNN models, then
examined their performance by changing the model size
from 50MB to 300MB, and letting A and ( vary with the
model size correspondingly.

As shown in Fig.14, the performance ratios of the com-
pared algorithms increase moderately but eventually flatten
out as the DNN model size grows. This observation is
consistent with our expectation that the performance ratios
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Fig. 14. Performance ratio changes with respect to different model sizes.
A lower ratio is better than a higher one, implying more cost-efficient.

gradually converge to a constant, demonstrating that the
online algorithm’s competitive ratio (performance ratio) is
bounded. Meanwhile, it is worth noting that the perfor-
mance of OTSharing is always slightly better than AC3
(the lower, the better). Regarding the descent issue of the
UOTSharing’s performance as the model size increases, we
speculated that since the period pulling brought by the
update sequence, the costs of transfer and pull are increased
correspondingly. For deep insight, we decomposed the cost
composition of different algorithms as shown in Fig.15.
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OTSharingTransfer
UOTSharing Transfer
B AC3Transfer
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Fig. 15. The cost of request sequence is changed with respect to
model size in different algorithms. The total cost consists of three parts—
caching, transferring, and pulling cost, and the breakdowns of each bar
correspond to these three parts from the bottom to the top.

The bar diagram in Fig.15 illustrates how the cost is
profiled for all the investigated algorithms. We can find
that a large model would lead to a significant increase in
the proportion of pulling and transferring in UOTSharing,
which is consistent with our speculation. On the contrary,
the edge servers perform pulling barely in OTSharing, and
cache cost accounts for a higher proportion than other
algorithms. Due to the total cost of OTSharing being the
lowest, the cache in OTSharing is significantly more cost-
efficient.

Despite reducing the use of pulling results in higher
cost efficiency, the frequency of model updating is also
reduced, which would affect the accuracy of the inference.
To compare the accuracy of baselines, we constructed an ex-
periment by leveraging ResNet50 [39] to classify the CIFAR-
10 dataset. To emulate the ICIE architecture, we opted to
attach a photo to each request for inference. Afterward,
devices transmit the photo to the cloud center, where the
pre-trained ResNet-50 resides. The GPU trains one epoch
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Fig. 16. The number of requests to retrieve the newest trained ResNet50
model, and the corresponding accuracy of the retrieved models on
CIFAR-10 in different algorithms.

with every 500 new data pieces (500 requests) received.
Upon completion of the training, the updated model can be
retrieved by means of a pull, resulting in improved accuracy
compared to the outdated model in practice.

The numerical results are shown in Fig.16. First, we
investigated the number of requests retrieved after the cur-
rent latest model was constructed, which means that these
requests occurred after a pull and before the next training.
As illustrated in Fig.16(a), it is evident that all the requests in
UOTSharing can be satisfied by the latest model, while OT-
Sharing almost takes the expired model. As such, an intuitive
and reasonable conjecture is that the accuracy of OTSharing
should be lower than others, and UOTSharing should exhibit
the best. This conclusion is confirmed by Fig.16(b). Although
the accuracies of the algorithms are the same initially, with
the leverage of the pull, the accuracy of UOTSharing is
significantly higher than the others. Therefore, it can be
concluded that the UOTSharing with the update mechanism
is superior to AC3 in terms of cost efficiency and model
update frequency (which directly affects the accuracy).

6 RELATED WORK

Currently, many mainstream model serving platforms (e.g.,
TensorFlow Serving [15], SageMaker [16], and DLHub [17])
focus mainly on serving the inference tasks by efficiently
scheduling server-side resources [15]-[17]. In contrast, we
concentrate on model sharing in this paper, which is often
dedicated to model serving for providing mobile users with
on-demand model inference-based applications in a cost-
efficient way. Liu et al. [40] studied federated reinforcement
learning in a cloud robotic system by using model sharing to
achieve knowledge transfer among different robots. In con-
trast, Jiang et al. [41] presented a model sharing framework
in the edge to facilitate cross-domain object detection in au-
tonomous driving. Though oriented to the edge, unlike this
study, we paid more attention to exploiting the edge server
as a cache in a cost-efficient way, rather than computing
resources as mentioned in [40] [41].

In comparison to our work, some studies also take
the networked edge servers as caches for data or knowl-
edge sharing. For example, Guo et al. [42] developed
an intelligence-sharing vehicular network for sharing the
knowledge acquired from DNN in MEC-enabled vehicular
networks. As with our serving framework, the network can
transfer the established model trained at the cloud center to
the edge servers if necessary. However, most of these studies
mainly focus on the mechanism of model sharing, instead of
the cost issue we concerned.
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In spirit, the model sharing in our problem has some
similarities with the data sharing in CDN [20]. Huang et
al. [43] formalized the data sharing problem as a multiple
Connected Facility Location problem [44] and developed a 6.55-
approximate algorithm to solve the fairness of this problem
while Luo et al. [45] studied the problem in edge settings,
and proposed an approximate balanced greedy algorithm
to make the content distribution more balanced. Both algo-
rithms are off-line, each with its own goal, lacking the notion
of online for cost reduction as in our case.

Wang et al. [30] proposed a homogeneous cost model for
data sharing in the cloud, thereby presenting an efficient off-
line optimal algorithm and a 3-competitive online algorithm
to reduce the overall sharing cost. We improved their cost
model to a semi-homogeneous one whereby the model
sharing, together with its off-line and online algorithms for
cost reduction, is deployed in the edge network. In addition,
to adapt the algorithms to the model sharing scenario, we
took both pulling and update mechanisms into account,
making the problem more complicated than the previous.
On this basis, we designed an online algorithm that is better
than the original (lower competitive ratio) and conducted
experimental comparisons.

In addition to the foregoing related studies, there are also
some learning-based methods, which focus on the problem
related to ours [18], [19], [46], [47]. For example, Yang et
al. [46], [47] proposed a multi-task framework to address
the resource allocation and offloading decision issues in the
MEC networks. However, these methods are beyond the
scope of our consideration as they cannot provide theoreti-
cal guarantees for the performance to deal with our sharing
problem.

7 CONCLUSION

In this paper, we investigated the cost-efficient model shar-
ing algorithms for the DNN serving in the edge network. We
first formulated the problem and analyzed its complexity.
Then based on a semi-homogeneous cost model, we pro-
posed a O(m?n) (which can be reduced to O(mlogm n)
with a well-designed data structure) optimal algorithm for
its off-line case and a 2.5-competitive algorithm for its online
case, respectively. To evaluate the quality of the competitive
ratio, we also proved a lower bound of 2 based on the
same cost model for any deterministic online algorithm. We
also considered the update operations and designed off-line
and online algorithms supporting the update mechanism.
We achieved these results with our in-depth insights and
careful analysis of this problem. Finally, we validated our
algorithms through a trace-based simulation study. Again,
although the DNN is a concern in this paper, the proposed
algorithms are generic and simple enough to adapt to other
appropriate content delivery-like scenarios.

In summary, the off-line algorithm is optimal in service
cost minimization but only practical in some instances,
while the online algorithm is sub-optimal but more practical
in reality. In addition, Although both off-line and online
algorithms are efficient, they are under global control, which
could be deemed as the major limitation in the current
design. We plan to design the distributed version in our near
future work. Meantime, to align with the characteristics of

13

DNN training, we are also contemplating an integration of
a penalty mechanism into the synchronization process, with
the aim of increasing accuracy while preserving the cost of
the end devices.
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